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Abstract. We propose that operator induction serves as an adequate
model of perception. We explain how to reduce universal agent models
to operator induction. We propose a universal measure of operator in-
duction fitness, and show how it can be used in a reinforcement learning
model and a homeostasis (self-preserving) agent based on the free en-
ergy principle. We show that the action of the homeostasis agent can be
explained by the operator induction model.

“Wir müssen wissen – wir werden wissen!”

— David Hilbert

1 Introduction

The ultimate intelligence research program is inspired by Seth Lloyd’s work on
the ultimate physical limits to computation [15]. We investigate the ultimate
physical limits and conditions of intelligence. This is the third installation of
the paper series, the first two parts proposed new physical complexity measures,
priors and limits of inductive inference [18,17].

We frame the question of ultimate limits of intelligence in a general physical
setting, for this we provide a general definition of an intelligent system and a
physical performance criterion, which as anticipated turns out to be a relation
of physical quantities and information, the latter of which we had conceptually
reduced to physics with minimum machine volume complexity in [18].

2 Notation and Background

2.1 Universal Induction

Let us recall Solomonoff’s universal distribution [21]. Let U be a universal com-
puter which runs programs with a prefix-free encoding like LISP; y = U(x)
denotes that the output of program x on U is y where x and y are bit strings.
1Any unspecified variable or function is assumed to be represented as a bit string.

1 A prefix-free code is a set of codes in which no code is a prefix of another. A com-
puter file uses a prefix-free code, ending with an EOF symbol, thus, most reasonable
programming languages are prefix-free.
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|x| denotes the length of a bit-string x. f(·) refers to function f rather than its
application.

The algorithmic probability that a bit string x ∈ {0, 1}+ is generated by a
random program π ∈ {0, 1}+ of U is:

PU (x) =
∑

U(π)∈x(0|1)∗∧π∈{0,1}+
2−|π| (1)

which conforms to Kolmogorov’s axioms [13]. PU (x) considers any continuation
of x, taking into account non-terminating programs.2 PU is also called the uni-
versal prior for it may be used as the prior in Bayesian inference, for any data
can be encoded as a bit string. We also give the basic definitions of Algorithmic
Information Theory (AIT) [14], where the algorithmic entropy, or complexity of
a bit string x ∈ {0, 1}+ is

HU (x) = min({|π| | U(π) = x}) H∗U (x) = − log2 PU (x) (2)

We use some variables in overloaded fashion in the paper, e.g., π might be a
program, a policy, or a physical mechanism depending on the context.

2.2 Operator induction

Operator induction is a general form of supervised machine learning where we
learn a stochastic map from n question and answer pairs D = {(qi, ai)} sampled
from a (computable) stochastic source µ. Operator induction can be solved by
finding in available time a set of operators Oj(·|·), each a conditional probability
density function (cpdf), such that the following goodness of fit is maximized

Ψ =
∑
j

ψjn (3)

for a stochastic source µ where each term in the summation is the contribution
of a model:

ψjn = 2−|(O
j(·|·)|

n∏
i=1

Oj(ai|qi). (4)

qi and ai are question/answer pairs in the input dataset drawn from µ, and Oj is
a computable cpdf in Equation 4. We can use the found m operators to predict
unseen data with a mixture model [24]

PU (an+1|qn+1) =

m∑
j=1

ψjnO
j(an+1|qn+1) (5)

The goodness of fit in this case strikes a balance between high a priori proba-
bility and reproduction of data like in minimum message length (MML) method
[27,26], yet uses a universal mixture like in sequence induction. The convergence
theorem for operator induction was proven in [23] using Hutter’s extension to
arbitrary alphabet, and it bounds total error by HU (µ) ln 2 similarly to sequence
induction.
2 We used the regular expression notation in language theory.
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2.3 Set induction

Set induction generalizes unsupervised machine learning where we learn a prob-
ability density function (pdf) from a set of n bitstrings D = {d1, d2, ..., dn}
sampled from a stochastic source µ. We can then inductively infer new members
to be added to the set with:

P (dn+1) =
PU (D ∪ dn+1)

PU (D)
(6)

Set induction is clearly a restricted case of operator induction where we set Qi’s
to null string. Set induction is a universal form of clustering, and it perfectly
models perception. If we apply set induction over a large set of 2D pictures of
a room, it will give us a 3D representation of it necessarily. If we apply it to
physical sensor data, it will infer the physical theory – perfectly general, with
infinite domains – that explains the data, perception is merely a specific case
of scientific theory inference in this case, though set induction works both with
deterministic and non-deterministic problems.

2.4 Universal measures of intelligence

There is much literature on the subject of defining a measure of intelligence.
Hutter has defined an intelligence order relation in the context of his univer-
sal reinforcement learning (RL) model AIXI [8], which suggests that intelligence
corresponds to the set of problems an agent can solve. Also notable is the univer-
sal intelligence measure [10,11], which is again based on the AIXI model. Their
universal intelligence measure is based on the following philosophical definition
compiled from their review of definitions of intelligence in the AI literature.

Definition 1 (Legg & Hutter). Intelligence measures an agent’s ability to
achieve goals in a wide range of environments.

It implies that intelligence requires an autonomous goal-following agent. The
intelligence measure of [10] is defined as

Υ (π) =
∑
µ∈E

2−HU (µ)V πµ (7)

where µ is a computable reward bounded environment, And V πµ is the ex-
pected sum of future rewards in the total interaction sequence of agent π.
V πµ = Eµ,π [

∑∞
t=1 γ

trt], where rt is the instantaneous reward at time t gener-
ated from the interaction between the agent π and the environment µ, and γt is
the time discount factor.

2.5 The free energy principle.

In Asimov’s story titled “The Last Question”, the task of life is identified as over-
coming the second law of thermodynamics, however futile. Variational free en-
ergy essentially measures predictive error, and it was introduced by Feynmann to
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address difficult path integral problems in quantum physics. In thermodynamic
free energy, energies are negative log probabilities like entropy. The free energy
principle states that any system must minimize its free energy to maintain its
order. An adaptive system that tends to minimize average surprise (entropy) will
tend to survive longer. A biological organism can be modelled as an adaptive
system that has an implicit probabilistic model of the environment, and the vari-
ational free energy puts an upper bound on the surprise, thus minimizing free
energy will improve the chances of survival. The divergence between the pdf of
environment and an arbitrary pdf encoded by its own mechanism is minimized
in Friston’s model [9]. It has been shown in detail that the free energy principle
adequately models a self-preserving agent in a stochastic dynamical system [6,9],
which we can interpret as an environment with computable pdf. An active agent
may be defined in the formalism of stochastic dynamical systems, by partitioning
the physical states X of the environment into X = E × S ×A× Λ where e ∈ E
is an external state, s ∈ S is a sensory state, a ∈ A an active state, and λ ∈ Λ
is an internal state. Self-preservation is defined by the Markov blanket S × A,
the removal of which partitions X into external states E and internal states Λ
that influence each other only through sensory and action states. E influences
sensations S, which in turn influence internal states Λ, resulting in the choice
of action signals S, which impact E, forming the feedback loop of the adaptive
system. The system states x ∈ X evolve according to the stochastic equation:

ẋ(t) = f(x) + ω (8)

x(0) = x0 (9)

f(x) =


fe(e, s, a)

fs(e, s, a)

fa(s, a, λ)

fλ(s, a, λ)

 (10)

where f(x) is the flow of system states and it is decomposed into flows over
the sets in the system partition, explicitly showing the dependencies among state
sets; ω models fluctuations. Friston formalizes the self-preservation (homeostasis)
problem as finding an internal dynamics that minimizes the uncertainty (Shan-
non entropy) of the external states, and shows a solution based on the principle
of least action [9] wherein minimizing free energy is synonymous with minimizing
the entropy of the external states (principle of least action), which subsequently
corresponds to active inference. We have space for only some key results from the
rather involved mathematical theory. p(s, f |m) is the generative pdf that gen-
erates sensorium s and fictive (hidden) states f ∈ F from probabilistic model
m, and q(f |λ) is the recognition pdf that predicts hidden states F in the world
given internal state. Generative pdf factorizes as p(s, f |m) = p(s|f,m)p(f |m).
Free energy is defined as energy minus entropy

F (s, λ) = Eq[− ln p(s, f |m)]−H(q(f |λ)) (11)

which can be subjectively computed by the system. Free energy is also equal to
surprise plus divergence between recognition and generative pdf’s.

F (s, λ) = Eq[− ln p(s, f |m)] +DKL(q(f |λ)||p(f |s,m)) (12)
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Minimizing divergence minimizes free energy, internal states λ may be optimized
to minimize predictive error using Equation 12, and surprise is invariant with
respect to λ. Free energy may be formulated as complexity plus accuracy of
recognition, as well.

F (s, λ) = Eq[− ln p(s, a|f,m)] +DKL(q(f |λ)||p(f,m)) (13)

In this case, we may choose an action that changes sensations to reduce predictive
error. Only the first term is a function of action signals. Minimization of free
energy turns out to be equivalent to the information bottleneck principle of
Tishby [9,25]. The information bottleneck method is equivalent to the pioneering
work of Ashby, which is simple enough to state here [3,2]:

SB = I(λ;F )− I(S;λ) (14)

where the first term is the mutual information between internal and hidden
states, and the second term is the mutual information between sensory states
and internal states. Both terms are expanded using conditional entropy, and
then two terms in the middle are eliminated because they are not relevant to
the optimization problem – we do not know the hidden variables in H(λ|F ) and
H(S) is constant.

SB = H(λ)−H(λ|F )−H(S) +H(S|λ) (15)

S∗B = H(λ) +H(S|λ) (16)

Minimizing S∗B Equation 16 thus minimizes the sum of the entropy of internal
states and the entropy required to encode sensory states given internal states. In
other words, it strikes an optimal balance between model complexity H(λ), and
model accuracy H(S|λ). Friston further shows that Equation 16 directly derives
from the free energy principle, closing potential loopholes in the theory. Please
see [5] for a comprehensive application of the free energy principle to agents and
learning. Note also that the bulk of the theory assumes the ergodic hypothesis.

3 Perception as General Intelligence

Since we are chiefly interested in stochastic problems in the physical world, we
propose a straightforward informal definition of intelligence:

Definition 2. Intelligence measures the capability of a mechanism to solve pre-
diction problems.

Mechanism is any physical machine as usual, see [4] which suggests likewise.
Therefore, a general formulation of Solomonoff induction, operator induction,
might serve as a model of general intelligence, as well [24]. Recall that operator
induction can infer any physically plausible cpdf, thus its approximation can
solve any classical supervised machine learning problem. The only slight issue
with Equation 7 might be that it seems to exclude classical AI systems that are
not agents, e.g., expert systems, machine learning tools, knowledge representa-
tion systems, search and planning algorithms, and so forth, which are somewhat
more naturally encompassed by our informal definition.
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3.1 Is operator induction adequate?

A question naturally arises as to whether operator induction can adequately solve
every prediction problem we require in AI. There are two strong objections to
operator induction that we know of. It is argued that in a dynamic environment,
as in a physical environment, we must use an active agent model so that we can
account for changes in the environment, as in the space-time embedded agent
[16] which also provides an agent-based intelligence measure. This objection may
be answered by the simple solution that each decision of an active intelligent
system may be considered a separate induction problem. The second objection
is that the basic Solomonoff induction can only predict the next bit, but not
the expected cumulative reward, which its extensions can solve. We counter
this objection by stating that we can reduce an agent model to a perception
and action-planning problem as in OOPS-RL [20]. In OOPS-RL, the perception
module searches for the best world-model given the history of sensory input
and actions in allotted time using OOPS, and the planning module searches
for the best control program using the world-model of the perception module
to determine the action sequence that maximizes cumulative reward likewise.
OOPS has a generalized Levin Search [12] which may be tweaked to solve either
prediction or optimization problems. Hutter has also observed that standard
sequence induction does not readily address optimization problems [8]. However,
Solomonoff induction is still complete in the sense of Turing, and can infer any
computable cpdf; and when the extension to Solomonoff induction is applied to
sequence prediction, it does not yield a better error bound, which seems like a
conundrum. On the other hand, Levin Search with a proper universal probability
density function (pdf) of programs can be modified to solve induction problems
(sequence, set, operator, and sequence prediction with arbitrary loss), inversion
problems (computer science problems in P and NP), and optimization problems
[23]. The planning module of OOPS-RL likewise requires us to write such an
optimization program. In that sense, AIXI implies yet another variation of Levin
Search for solving a particular universal optimization problem, however, it also
has the unique advantage that formal transformations between AIXI problem
and many important problems including function minimization and strategic
games have been shown [8]. Nevertheless, the discussion in [23] is rather brief.
Also see [1] for a discussion of universal optimization.

Proposition 1. A discrete-time universal RL model may be reduced to operator
induction.

More formally, the perceptual task of an RL agent would be inferring from a
history the cumulative rewards in the future, without loss of generality. Let the
chronology C be a sequence of sensory, reward, and action data C = [(s1, r1, a1),
(s2, r2, a2), . . . , (sn, rn, an)] where Ci accesses ith element, and Ci:j accesses the
subsequence [Ci, Ci+1, . . . , Cj ]. Let rc be the cumulative reward function where

rc(C, i, j) =
∑k≤j
k=i rk. After observing (sn, rn, an), we construct dataset Dc as

follows. For every unique (i, j) pair such that 1 < i ≤ j ≤ n, we concatenate
history tuples C1:(i−1), and we form a question string that also includes the next
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action, i and j, q = [(s1, r1, a1), (s2, r2, a2), . . . , (s(i−1), r(i−1), a(i−1))], ai, i, j, and
an answer string which is the cumulative reward a = rc(C, i, j). Solving the op-
erator induction problem for this dataset DC will yield a cpdf which predicts
cumulative rewards in the future. After that, choosing the next action is a simple
matter of maximizing r(C1:n, ai, n+ 1, λ) where λ is the planning horizon. The
reduction causes quadratic blow-up in the number of data items. Our somewhat
cumbersome reduction suggests that all of the intelligence here comes from op-
erator induction, surely an argmax function, or a summation of rewards does
not provide it, but rather it builds constraints into the task. In other words,
we interpret that the intelligence in an agent model is provided by inductive
inference, rather than an additional application of decision theory.

4 Physical Quantification of Intelligence

Definition 1 corresponds to any kind of reinforcement-learning or goal-following
agent in AI literature quite well, and can be adapted to solve other kinds of prob-
lems. The unsupervised, active inference agent approach is proposed instead of
reinforcement learning approach in [7], and the authors argue that they did not
need to invoke the notion of reward, value or utility. The authors in particu-
lar claim that they could solve the mountain-car problem by the free-energy
formulation of perception. We thus propose a perceptual intelligence measure.

4.1 Universal measure of perception fitness

Note that operator induction is considered to be insufficient to describe universal
agents such as AIXI, because basic sequence induction is inappropriate for mod-
elling optimization problems [8]. However, a modified Levin search procedure can
solve such optimization problems as in finding an optimal control program [20].
In OOPS-RL, the perception module searches for the best world-model given
the history of sensory input and actions in allotted time using OOPS, and the
planning module searches for the best control program using the world-model of
the perception module to determine the control program that maximizes cumu-
lative reward likewise. In this paper, we consider the perception module of such
a generic agent which must produce a world-model, given sensory input.

We can use the intelligence measure Equation 7 in a physical theory of in-
telligence, however it contains terms like utility that do not have physical units
(i.e., we would be preferring a more reductive definition). We therefore attempt
to obtain such a measure using the more benign goodness-of-fit (Equation 3).
Let the universal measure of the fitness of operator induction be defined as

ΥO(π) =
∑
µ∈S

2−HU (µ)Ψ(µ, π) (17)

where S is the set of possible stochastic sources in the observable universe U
and π is a physical mechanism, and Ψ is relative to a stochastic source µ and a
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physical mechanism (computer) π. This would be maximum if we assume that
operator induction were solved exactly by an oracle machine.

Note that HU (µ) is finite; Ψ(µ, π) is likewise bounded by the amount of
computation π will spend on approximating operator induction.

4.2 Application to homeostasis agent

In a presentation to Friston’s group in January 2015, we noted that the mini-
mization of S∗B is identical to Minimum Message Length principle, which can be
further refined as

S ′B = H∗(Λ) +H∗(S|Λ) (18)

using Solomonoff’s entropy formulation that takes the negative logarithm of al-
gorithmic probability [22]. In the unsupervised agent context, solving this min-
imization problem corresponds to inferring an optimal behavioral policy as Λ
constitutes internal dynamics which may be modeled as a non-terminating pro-
gram. We could directly apply induction to minimize KL divergence, as well.
Note the correspondence to operator induction.

Theorem 1. Minimizing the free energy is equivalent to solving the operator
induction problem for (λ, s) pairs where qi ∈ Λ and ai ∈ S.

Proof. Observe that minimizing Equation 16 corresponds to picking maximum
ψjn since in entropy form,

− log2(ψjn) = − log2(2−|O
j(·|·)|)− log2(

n∏
i=1

Oj(si|λi))

= |Oj(·|·)| −
n∑
i=1

log2(Oj(ai|qi)) = |Oj(·|·)|+H(Oj(ai|qi)).

We define a non-redundant selection of ψjn’s, |Oj(·|·)| = HU (Oj(·|·)), e.g., we
pick only the shortest programs that produce the same cpdf, otherwise the en-
tropy form would diverge. Minimizing Equation 18 is exactly operator induction,
even though the questions are programs, the ensemble here is of all programs
and all sensory state, program pairs in space-time.

∑
|Oj(·|·)| = H∗(Λ) and∑

H(Oj(ai|qi)) = H∗(S|Λ). Note that this merely establishes model equiva-
lence, we have not yet explained how it is to be computed in detail.

Proposition 2. By the above theorem, Equation 17 measures the goodness of
fit for a given homeostasis agent mechanism, for all possible environments.

The mechanism π that maximizes Ψ(µ, π) achieves less error with respect to
a source (which may be taken to correspond to the whole random dynamical
system in the framework of free energy principle), while ΥO(π) normalizes Ψ(µ, π)
with respect to a random dynamical system. It holds for the same reasons Legg’s
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measure holds, which are not discussed due to space limits in the present paper.
We prefer the unsupervised homeostasis agent among the two agent models we
discussed because it provides an exceptionally elegant and reductionist model of
autonomous behavior, that has been rigorously formulated physically. Note that
this agent is conceptually related to the survival property of RL agents discussed
in [19].

4.3 Discussion

The unsupervised model still achieves exploration and curiosity, because it would
stochastically sample and navigate the environment to reduce predictive errors.
While we either optimize perceptual models or choose an action that would befit
expectations, it might be possible to express the optimal adaptive agent policy in
a general optimization framework. A more in-depth analysis of the unsupervised
agent will be presented in a subsequent publication. A more general reductive
definition of intelligence should also be researched. These developments could
eventually help unify AGI theory.
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